Nonparametric identification of LPV models under general noise conditions: an LS-SVM based approach
نویسندگان
چکیده
Parametric identification approaches in the Linear Parameter-Varying (LPV) setting require optimal prior selection of a set of functional dependencies, used in the parametrization of the model coefficients, to provide accurate model estimates of the underlying system. Consequently, data-driven estimation of these functional dependencies has a paramount importance, especially when very limited a priori knowledge is available. Existing overparametrization and nonparametric methods dedicated to nonlinear estimation offer interesting starting points for this problem, but need reformulation to be applied in the LPV setting. Moreover, most of these approaches are developed under quite restrictive auto-regressive noise assumptions. In this paper, a nonparametric Least-Squares Support Vector Machine (LS-SVM) approach is extended for the identification of LPV polynomial models. The efficiency of the approach in the considered noise setting is shown, but the drawback of the auto-regressive noise assumption is also demonstrated by a challenging LPV identification example. To preserve the attractive properties of the approach, but to overcome the drawbacks in the estimation of polynomial LPV models in a general noise setting, a recently developed Instrumental Variable (IV)-based extension of the LS-SVM method is applied. The performance of the introduced IV and the original LS-SVM approaches are compared in an identification study of an LPV system with unknown noise dynamics.
منابع مشابه
A Kernel-based Approach to MIMO LPV State-space Identification and Application to a Nonlinear Process System ?
This paper first describes the development of a nonparametric identification method for linear parameter-varying (LPV) state-space models and then applies it to a nonlinear process system. The proposed method uses kernel-based least-squares support vector machines (LS-SVM). While parametric identification methods require proper selection of basis functions in order to avoid overparametrization ...
متن کاملIo-port.net Database Summary: Least-squares Support Vector Machines (ls-svms), Originating from Statistical Learning and Reproducing Kernel Hilbert Space
io-port 06474690 Laurain, Vincent; Tóth, Roland; Piga, Dario; Zheng, Wei Xing An instrumental least squares support vector machine for nonlinear system identification. Automatica 54, Article ID 6308, 340-347 (2015). Summary: Least-Squares Support Vector Machines (LS-SVMs), originating from Statistical Learning and Reproducing Kernel Hilbert Space (RKHS) theories, represent a promising approach ...
متن کاملAn instrumental least squares support vector machine for nonlinear system identification
Least-Squares Support Vector Machines (LS-SVM’s), originating from Stochastic Learning theory, represent a promising approach to identify nonlinear systems via nonparametric estimation of nonlinearities in a computationally and stochastically attractive way. However, application of LS-SVM’s in the identification context is formulated as a linear regression aiming at the minimization of the l2 l...
متن کاملLinear Parameter Varying System Identification: State-Space Approaches
Presently, linear parameter varying (LPV) systems are broadly used in a wide range of applications such as in aerospace, energy, health, mechatronics, process control, computational systems, etc. Essentially, an LPV system is a linear system whose parameters are functions of a scheduling signal. It can be described by state-space or input/output models, in continuous or discrete-time. The incre...
متن کاملDirect Identification of Continuous-Time LPV Input/Output Models
Controllers in the linear parameter-varying (LPV) framework are commonly designed in continuoustime (CT) requiring accurate and low-order CT models of the system. However, identification of continuous-time LPV models is largely unsolved, representing a gap between the available LPV identification methods and the needs of control synthesis. In order to bridge this gap, direct identification of C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017